Requirements for Carnitine Shuttle-Mediated Translocation of Mitochondrial Acetyl Moieties to the Yeast Cytosol

نویسندگان

  • Harmen M van Rossum
  • Barbara U Kozak
  • Matthijs S Niemeijer
  • James C Dykstra
  • Marijke A H Luttik
  • Jean-Marc G Daran
  • Antonius J A van Maris
  • Jack T Pronk
چکیده

UNLABELLED In many eukaryotes, the carnitine shuttle plays a key role in intracellular transport of acyl moieties. Fatty acid-grown Saccharomyces cerevisiae cells employ this shuttle to translocate acetyl units into their mitochondria. Mechanistically, the carnitine shuttle should be reversible, but previous studies indicate that carnitine shuttle-mediated export of mitochondrial acetyl units to the yeast cytosol does not occur in vivo This apparent unidirectionality was investigated by constitutively expressing genes encoding carnitine shuttle-related proteins in an engineered S. cerevisiae strain, in which cytosolic acetyl coenzyme A (acetyl-CoA) synthesis could be switched off by omitting lipoic acid from growth media. Laboratory evolution of this strain yielded mutants whose growth on glucose, in the absence of lipoic acid, was l-carnitine dependent, indicating that in vivo export of mitochondrial acetyl units to the cytosol occurred via the carnitine shuttle. The mitochondrial pyruvate dehydrogenase complex was identified as the predominant source of acetyl-CoA in the evolved strains. Whole-genome sequencing revealed mutations in genes involved in mitochondrial fatty acid synthesis (MCT1), nuclear-mitochondrial communication (RTG2), and encoding a carnitine acetyltransferase (YAT2). Introduction of these mutations into the nonevolved parental strain enabled l-carnitine-dependent growth on glucose. This study indicates intramitochondrial acetyl-CoA concentration and constitutive expression of carnitine shuttle genes as key factors in enabling in vivo export of mitochondrial acetyl units via the carnitine shuttle. IMPORTANCE This study demonstrates, for the first time, that Saccharomyces cerevisiae can be engineered to employ the carnitine shuttle for export of acetyl moieties from the mitochondria and, thereby, to act as the sole source of cytosolic acetyl-CoA. Further optimization of this ATP-independent mechanism for cytosolic acetyl-CoA provision can contribute to efficient, yeast-based production of industrially relevant compounds derived from this precursor. The strains constructed in this study, whose growth on glucose depends on a functional carnitine shuttle, provide valuable models for further functional analysis and engineering of this shuttle in yeast and other eukaryotes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase.

Acetyl-coenzyme A (acetyl-CoA) is not only an essential intermediate in central carbon metabolism, but also an important precursor metabolite for native or engineered pathways that can produce many products of commercial interest such as pharmaceuticals, chemicals or biofuels. In the yeast Saccharomyces cerevisiae, acetyl-CoA is compartmentalized in the cytosol, mitochondrion, peroxisome and nu...

متن کامل

Rewiring yeast acetate metabolism through MPC1 loss of function leads to mitochondrial damage and decreases chronological lifespan

During growth on fermentable substrates, such as glucose, pyruvate, which is the end-product of glycolysis, can be used to generate acetyl-CoA in the cytosol via acetaldehyde and acetate, or in mitochondria by direct oxidative decarboxylation. In the latter case, the mitochondrial pyruvate carrier (MPC) is responsible for pyruvate transport into mitochondrial matrix space. During chronological ...

متن کامل

Ichthyotoxic Cochlodinium polykrikoides Induces Mitochondrial Mediated Oxidative Stress and Apoptosis in Rat Liver Hepatocytes

In this research, we investigated the cytotoxic mechanisms of Cochlodinium polykrikoidescell lysate on isolated rat liver hepatocytes.This micro algae is responsible for a severe and widespread harmful algal bloom in the Persian Gulf and Gulf of Oman (2008-2009). Isolated hepatocytes were obtained by collagenase perfusion of Sprague-Dawley rat liver.According to our results, incubation of algal...

متن کامل

Acetyl-L-carnitine suppresses thyroid hormone-induced and spontaneous anuran tadpole tail shortening.

Mitochondrial membrane permeability transition (MPT) plays a crucial role in apoptotic tail shortening during anuran metamorphosis. L-carnitine is known to shuttle free fatty acids (FFAs) from the cytosol into mitochondria matrix for β-oxidation and energy production, and in a previous study we found that treatment with L-carnitine suppresses 3, 3', 5-triiodothyronine (T3 ) and FFA-induced MPT ...

متن کامل

Ichthyotoxic Cochlodinium polykrikoides Induces Mitochondrial Mediated Oxidative Stress and Apoptosis in Rat Liver Hepatocytes

In this research, we investigated the cytotoxic mechanisms of Cochlodinium polykrikoidescell lysate on isolated rat liver hepatocytes.This micro algae is responsible for a severe and widespread harmful algal bloom in the Persian Gulf and Gulf of Oman (2008-2009). Isolated hepatocytes were obtained by collagenase perfusion of Sprague-Dawley rat liver.According to our results, incubation of algal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016